Polyhedral Divisors and Algebraic Torus Actions

نویسنده

  • KLAUS ALTMANN
چکیده

We provide a complete description of normal affine varieties with effective algebraic torus action in terms of what we call proper polyhedral divisors on semiprojective varieties. Our theory extends classical cone constructions of Dolgachev, Demazure and Pinkham to the multigraded case, and it comprises the theory of affine toric varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhedral divisors and torus actions of complexity one over arbitrary fields

We show that the presentation of affine T-varieties of complexity one in terms of polyhedral divisors holds over an arbitrary field. We also describe a class of multigraded algebras over Dedekind domains. We study how the algebra associated to a polyhedral divisor changes when we extend the scalars. As another application, we provide a combinatorial description of affine G-varieties of complexi...

متن کامل

Rational Singularities of Normal T-varieties

A T-variety is an algebraic variety X with an effective regular action of an algebraic torus T. Altmann and Hausen [AH] gave a combinatorial description of an affine T-variety X by means of polyhedral divisors. In this paper we compute the higher direct images of the structure sheaf of a desingularization of X in terms of this combinatorial data. As a consequence, we give a criterion as to when...

متن کامل

Compactifications of Subvarieties of Tori

We study compactifications of subvarieties of algebraic tori defined by imposing a sufficiently fine polyhedral structure on their non-archimedean amoebas. These compactifications have many nice properties, for example any k boundary divisors intersect in codimension k. We consider some examples including M0,n ⊂ M0,n (and more generally log canonical models of complements of hyperplane arrangem...

متن کامل

Projective Varieties with Torus Action

Projective toric varieties are described either by lattice polytopes in the character group of the torus, or by a polyhedral fan. In the latter case, the projective embedding is encoded by a piecewise linear function on the fan. We will generalize this concept to the case of torus actions of smaller dimension such as the action of (C) on Grass(2, n). The resulting description includes a direct ...

متن کامل

Gluing Affine Torus Actions via Divisorial Fans

Generalizing the passage from a fan to a toric variety, we provide a combinatorial approach to construct arbitrary effective torus actions on normal, algebraic varieties. Based on the notion of a “proper polyhedral divisor” introduced in earlier work, we develop the concept of a “divisorial fan” and show that these objects encode the equivariant gluing of affine varieties with torus action. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006